Electronics for IoT

Power Management

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Power ESP32 from Solar Cell

Challenges

- Solar cell only deliver ~ 30mA
 - ~ 100 mA in full sun
- ESP32 consumes up to 200mA
- No sun at night
- How connect solar cell to ESP32?
- ESP32 needs 3.3V
- Solar cell generates up to 5V

Huzzah32 Power Supply

- USB is 5 Volts
- ESP32 needs 3.3 V
- How does the Huzzah32 generate 3.3 V from 5 V?

Power Regulators

Types of Regulators

Power Regulator Efficiency

Huzzah32 Power Regulator

B. E. Boser

Huzzah32 Power Supply

AP2112 600mA Regulator

AP2112

600mA CMOS LDO REGULATOR WITH ENABLE

Description

The AP2112 is CMOS process low dropout linear regulator with enable function, the regulator delivers a guaranteed 600mA (min.) continuous load current.

The AP2112 is available with a fixed output voltage of 1.2V, 1.8V, 2.5V, 2.6V, or 3.3V. The LDO has an output accuracy of ±1.5% and a very fast loop response providing excellent performance for dealing with line and load transients. The AP2112 includes an auto discharge function which connects the output to ground via 60Ω of resistance when the device is disabled.

The regulator features low power consumption, and provides SOT25, SOT89-5, and SO-8 packages. Previously SOT-23-5, SOT-89-5 and SOIC-8 packages were respectively identified as SOT23-5, SOT89-5 and SO-8 but have been renamed to match the latest Diodes Incorporated's nomenclature.

Features

- Output Voltage Accuracy: ±1.5%
- Output Current: 600mA (Min.)
- Foldback Short Current Protection: 50mA
- Enable Function to Turn ON/OFF VOUT

Pin Assignments

2

GND

3

ΕN

1

NC

2

GND

3

NC

1

EN

AP2112

AP2112

Absolute Maximum Ratings (Note 5)

Symbol	Parameter	Rating	Unit
Vcc	Power Supply Voltage	6.5	V
TJ	Operating Junction Temperature Range	+150	°C
T _{STG}	Storage Temperature Range	-65 to +150	°C
T _{LEAD}	Lead Temperature (Soldering, 10 Seconds)	+260	°C

Recommended Operating Conditions

Symbol	Parameter	Min	Мах	Unit
VIN	Supply Voltage	2.5	6.0	V
T _A	Ambient Operation Temperature Range	-40	+85	°C

Power Huzzah32 from Solar Cell

Huzzah32 Current

Solar Power

Running Huzzah32 from Solar Cell

Solar Powered Weather Station

- Design plan:
 - 1) Reduce Huzzah32 power requirement
 - 2) Add battery for nights, cloudy days
- Let's address first (1), then (2) ...

Weather Station Requirements

ESP32 Current Consumption

ESP32 Deepsleep

ESP32 Average Current - Example

No so fast ...

Not so Fast

- Lots of stuff on Huzzah32 board
- Not just ESP32!
- How much current do the other circuits consume?
- How can we find out?
- Hmm, lots of datasheets
 to consult ...

Measure Huzzah32 Supply Current

- No need for USB
 - Do not power it!
- Connect supply to battery
- But how make the connection?

Lab Supply

Power from Lab Supply

Huzzah32 Current Consumption

- Just processor on
- Processor & WiFi on
- Deepsleep

43 mA 120 ... 200 mA 420 μA

- Hmm, a bit more than 10 μ A
- Are we still ok?
- What if not

ESP32 Average Current - Example

ESP32

Huzzah32

Battery

Battery only Run-Time

Energy vs Ah

Minimum Battery Capacity

LiPo Batteries for Huzzah32

Solar Power at Night

Putting Everything Together ...

- Huzzah32
 - Peak current
 - Average current
- Solar cell
 - Peak current
 - Average current
- Battery
 - Max run time
 - Average current
 - Capacity
- Are we good?

E. Boser

What is Deepsleep?

- Processor off
- RTC still running
 Can wake up the processor
- What is this good for?

10mA → 200mA

- Keep ESP32 in deepsleep most of the time
- Wake up every 10min or so to take measurements
 Send results to cloud
- E.g.
 - 6 measurements per hour
 - 10 seconds @ 200mA
 - Deepsleep for rest of time
 - 3600 60 sec @ 10μA
 - Average current

Putting Everything Together

- Solar cell
- Huzzah32 with ESP32
- INA219 (why?)
- Weather sensors

• Firmware

Deepsleep

- Processor, WiFi OFF
- Only functions still power
 - RTC, including deepsleep wakeup timer
 - Small amount of memory
 - Few peripherals
- After deepsleep, processor restarts
 - Executes boot.py, main.py
 - WiFi disconnected (reconnect if needed)
 - RTC still has correct time

Enter Deepsleep

from machine import deepsleep
sleep for x milli seconds
milli_seconds = 20000
deepsleep(milli_seconds)

- Processor restarts after milli_seconds delay
- Optional: wake from external pin (later)

Deepsleep Memory

- RTC memory
 - 64 integers (32 bits), pos 0 ... 63
 - One string, up to 2048 characters
 - Retained during deepsleep
- Syntax:

```
from machine import RTC
rtc = RTC()
# read and write RTC memory
rtc.write(0, 123)
print(rtc.read(0))
rtc.write_string("hello world")
print(rtc.read_string())
```

Keeping Track of Measurements

Thingspeak.com

□ , ThingSpeak™	Channels 🗸	Apps	Community	Support -	How to Buy	Account - Sign Out
Solar						
Channel ID: 3 Author: ttmetro Access: Private			Solar cell volta	ge and current monitor		
Private View Public View	Channel S	ettings	Sharing /	API Keys Data Import / Export		
Add Visualizations	🛛 Data Export				MATLAB Analysis	MATLAB Visualization
Channel Stats						
Created: 5 months ago Updated: 5 months ago Last entry: 5 months ago Entries: 14307						

Skeleton boot.py for Solar Weather Station

Summary

- Low power operation
 - Turn power off (most of the time)
 - Deepsleep
 - Average current << peak current
 - Duty cycle
- Beware of other circuits that consume power
 - Sensors?
 - Sleep/power down modes?
 - Check datasheets and/or measure
- Test!